Ensemble of Different Approaches for a Reliable Person Re - identification System
نویسندگان
چکیده
An ensemble of approaches for reliable person re-identification is proposed in this paper. The proposed ensemble is built combining widely used person re-identification systems using different color spaces and some variants of state-of-the-art approaches that are proposed in this paper. Different descriptors are tested, and both texture and color features are extracted from the images; then the different descriptors are compared using different distance measures (e.g., the Euclidean distance, angle, and the Jeffrey distance). To improve performance, a method based on skeleton detection, extracted from the depth map, is also applied when the depth map is available. The proposed ensemble is validated on three widely used datasets (CAVIAR4REID, IAS, and VIPeR), keeping the same parameter set of each approach constant across all tests to avoid overfitting and to demonstrate that the proposed system can be considered a general-purpose person reidentification system. Our experimental results show that the proposed system offers significant improvements over baseline approaches. The source code used for the approaches tested in this paper will be available at https://www.dei.unipd.it/node/2357 and http://robotics.dei.unipd.it/ reid/. Keywords—Person Re-Identification; Texture Descriptors; Ensemble; Color Space; Depth Map.
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملبازشناسی انسان در سیستمهای نظارت ویدئویی
People re-identification is one of the most important and fundamental processes in video surveillance systems. The accuracy and efficiency of this task influence the effectiveness of the subsequent processes. Event detection and behavior analysis are instances of such subsequent processes that are classified in semantic levels. In people re-identification, having an image or video of an individ...
متن کاملStructured learning of metric ensembles with application to person re-identification
Matching individuals across non-overlapping camera networks, known as person re-identification, is a fundamentally challenging problem due to the large visual appearance changes caused by variations of viewpoints, lighting, and occlusion. Approaches in literature can be categoried into two streams: The first stream is to develop reliable features against realistic conditions by combining severa...
متن کاملSwiss-System Based Cascade Ranking for Gait-Based Person Re-Identification
Human gait has been shown to be an efficient biometric measure for person identification at a distance. However, it often needs different gait features to handle various covariate conditions including viewing angles, walking speed, carrying an object and wearing different types of shoes. In order to improve the robustness of gait-based person re-identification on such multi-covariate conditions...
متن کاملVirtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification
In this paper we introduce an ensemble method for convolutional neural network (CNN), called “virtual branching,” which can be implemented with nearly no additional parameters and computation on top of standard CNNs. We propose our method in the context of person re-identification (re-ID). Our CNN model consists of shared bottom layers, followed by “virtual” branches, where neurons from a block...
متن کامل